Application Note · PlasmaQuant MS

Challenge

Analysis of environmental samples with complex high matrix concentration and quantification of major, minor and trace elements

Solution

The PlasmaQuant MS provides reliable, precise and accurate results from trace to major elements concentration range.

Analysis of Marine Sediments and Sewage Sludge by PlasmaQuant MS

Introduction

To evaluate the potential ecotoxicology of soils, sediments an particularly sewage sludge constant monitoring for heavy metal content is required. The recycling of sewage sludge is closely linked to environmental regulations, so that a precise characterization is necessary. Industrial wastewater and waste are also subject to strict regulations and must be regularly checked and characterized. The determination of harmful and toxic elements in solid materials requires a digestion procedure prior to the analysis. Depending on sample type, matrix composition and the analyte elements of interest, the degree of difficulty of sample preparation varies. In this work, sample preparation was performed by microwave assisted acidic mineralization.

In total, 26 elements from major (percent), minor (ppm) and trace (ppb) levels were determined in three certified reference materials CRMs (two sewage sludge: BCR-144R and CRM055, one marine sediment: PACS-2). The obtained results clearly show excellent agreement with the certified values. Spike recoveries in the range of 90 to 104%, accuracy with Z-score uncertainty values ranging within -2.0 and +2.0 as well as precicion of less than 5% relative standard deviation (RSD) prove the method robustness and applicability to environmental samples.

Materials and Methods

Instrumentation

All analytical work was performed using the PlasmaQuant MS featuring the integrated collision/reaction cell (iCRC) technology to remove polyatomic species formed in the plasma and the ReflexION ion optical system with 90° ion mirror for unique reflection of analyte ions that guarantees high sensitivity for improved precision and accuracy of all analyses. To detect the major, minor and trace element concentrations in a single run, the ADD, all digital detector, was used providing 11 orders of linear dynamic range without changing the detection mode and thus without the need for a frequent cross calibration. The ICP-MS system was coupled to an autosampler ASPQ 3300.

All experiments were carried out in a routine analytical laboratory, and not under 'clean room' conditions. Instrument operating conditions are summarized in Table 1, including the integrated Collision Reaction Cell (iCRC) modes using helium and hydrogen gases to remove problematic spectroscopic interferences on first-row transition metals. Total acquisition time was seven minutes per sample using three acquisition modes (Helium, No Gas and Hydrogen mode).

Table 1: Instrument settings - PlasmaQuant MS

Parameter	Specification
Plasma gas flow	9.0 L/min
Auxiliary gas flow	1.10 L/min
Nebulizer gas flow	1.07 L/min
iCRC gas setting	No Gas for ⁷ Li, ⁹ Be, ⁵⁹ Co, ⁶⁶ Zn, ⁹⁸ Mo, ¹⁰⁷ Ag, ²⁰⁶⁺²⁰⁷⁺²⁰⁸ Pb, ²³⁸ U He – 130 mL/min for ²³ Na, ³¹ P, ²⁴ Mg, ²⁷ Al, ³⁹ K, ⁴⁴ Ca, ⁵¹ V, ⁵² Cr, ⁵⁵ Mn, ⁶⁰ Ni, ⁶⁵ Cu, ⁸⁶ Sr, ¹¹⁴ Cd and ²⁰⁵ Tl H2 – 120 mL/min for ³³ S; ⁵⁴ Fe, ⁷⁵ As and ⁷⁸ Se
Plasma RF power	1.20 kW
Dwell time	30 ms
Scan per replicate	25 (peak hopping, 1pt/peak)
No. of replicates	5
Rump rate	20 rpm – black/black PVC pump tubing (<1mL/min)
Torch	Fassel torch with 2.4mm injector
Cones	Ni-sampler and Ni-skimmer
Sampling depth	6.0 mm
Nebulizer type	MicroMis™ 0.4 mL/min (quartz concentric)
lon optics	Auto-optimized
Spray chamber type	Quartz glass Scott-type with Peltier chiller
Spray chamber temperature	3 °C
Internal standards	Sc, Y, Ge, Rh, In, Ir, Tb and Bi, 5 μg/L, interpolate correction

Samples and Reagents

The following high purity reagents were used for all solution preparations:

- Deionized water (>18.2 MΩ*cm, Millipore MiliQ)
- Nitric acid Supra-quality 69 % (ROTIPURAN[®] Supra)
- Hydrochloric acid Supra-quality 35 % (ROTIPURAN[®] Supra)

Sample preparation

All three reference materials were digested in a TOPwave microwave digestion system using the setting displayed in Table 2. After digestion samples were left to cool to ambient temperature, filled up to 50 mL using deionized water and filtered through a Whatman membrane prior to analysis. Afterward, all samples were diluted 100, 20 and 10 folds. Since all the samples had certified values, Z-score parameter was used to evaluate accuracy besides spike recovery efficiency.

$$Z - score = \frac{(x - \mu)}{\delta}$$

Where x represents the mean value obtained, μ the reference value and δ the uncertainty of the reference value. **Note:** A Z-score indicates where the score lies on a normal distribution curve. A Z-score of zero describes a result that is exactly the average certified value, while a score of +3.0 describes a value that is much higher than average. Z-score between -2.0 and 2.0 is defined by a normal distribution of 97.72%.

Table 2: Digestion method parameters used by TOPwave microwave digestion system

Parameter	Specification
Sample amount	0.5 g dried and sieved
H ₂ O	2 mL
HNO ₃	7.5 mL
HCI	2.5 mL
Vessel	РМ60
Heating Stage 1 / time	140°C / 5 min
Heating Stage 2 / time	175°C / 5 min
Heating Stage 3 / time	210°C / 20 min
Cooling / time	50°C / 30 min
Final volume	50 mL with ultrapure H_2O filtered through Whatman N°.42 prior to analysis

Calibration

The method was calibrated with multi-element standards in the concentration levels of 0.5, 5, 25, 50, 250 and 500 μ g/L for the minor elements Li, Be, V, Cr, Mn, Co, Ni, Cu, Zn, As, Se, Sr, Mo, Ag, Cd, Tl, Pb and U and 0.5, 1, 2.5, 10, 25, 50 mg/L for P, S, Na, K, Al, Ca, Mg and Fe. All solutions were prepared in 50 mL plastic tubes from SARSTEDT using 1% HNO₃. The calibration graphs in Figure 1 show good examples for the performance of the PlasmaQuant MS at defined concentrations levels. All calibrations were measured with correlation coefficients higher than 0.9999 in the range tested.

Evaluation

According to the expected interferences on certain mass/charge ratios, different isotopes were measured by using collision gas (He) or a reactive gas (H2) by utilizing the iCRC technology of Analytik Jena. Therefore, for each measurement, three condition sets (Helium, no Gas and Hydrogen modes) were prepared with the respective isotopes in the appropriate set (see Table 3). Within one measurement, all condition sets were executed with switching times of 30 seconds. For data recording, five average values were calculated from twenty-five scans each, which were used for the calculation of one average value including standard deviation.

Table 3: Expected interferences and used iCRC gases

lsotope	Expected interference	iCRC mode
⁷ Li	-	No gas
°Be	-	No gas
²³ Na	-	He (due to high concentration/signal)
²⁴ Mg	-	He (due to high concentration/signal)
²⁷ AI	¹¹ B ¹⁶ O	Не
³¹ P	¹⁵ N ¹⁶ O	Не
³³ S	¹⁷ O ¹⁶ O	H ₂
³⁹ K	²³ Na ¹⁶ O	Не
⁴⁴ Ca	²⁸ Si ¹⁶ O	Не
⁵¹ V	³⁵ Cl ¹⁶ O	Не
⁵² Cr	³⁶ S ¹⁶ O; ³⁶ Ar ¹⁶ O; ⁴⁰ Ar ¹² C	Не
⁵⁴ Fe	³⁸ Ar ¹⁶ O	H ₂
⁵⁵ Mn	³⁹ K ¹⁶ O	Не
⁵⁹ Co	-	No gas
⁶⁰ Ni	⁴⁴ Ca ¹⁶ O	Не
⁶⁵ Cu	⁴⁹ Ti ¹⁶ O	Не
⁶⁶ Zn	-	No gas
⁷⁵ As	⁴⁰ Ar ³⁵ Cl	H ₂
⁷⁸ Se	⁴⁰ Ar ³⁸ Ar	H ₂
⁸⁶ Sr	-	He (due to high concentration/signal)
⁹⁸ Mo	-	No gas
¹⁰⁷ Ag	-	No gas
¹¹⁴ Cd	⁹⁸ Mo ¹⁶ O	Не
²⁰⁵ TI	-	He (due to high concentration/signal)
²⁰⁶⁺²⁰⁷⁺²⁰⁸ Pb	-	No gas
²³⁸ U	-	No gas

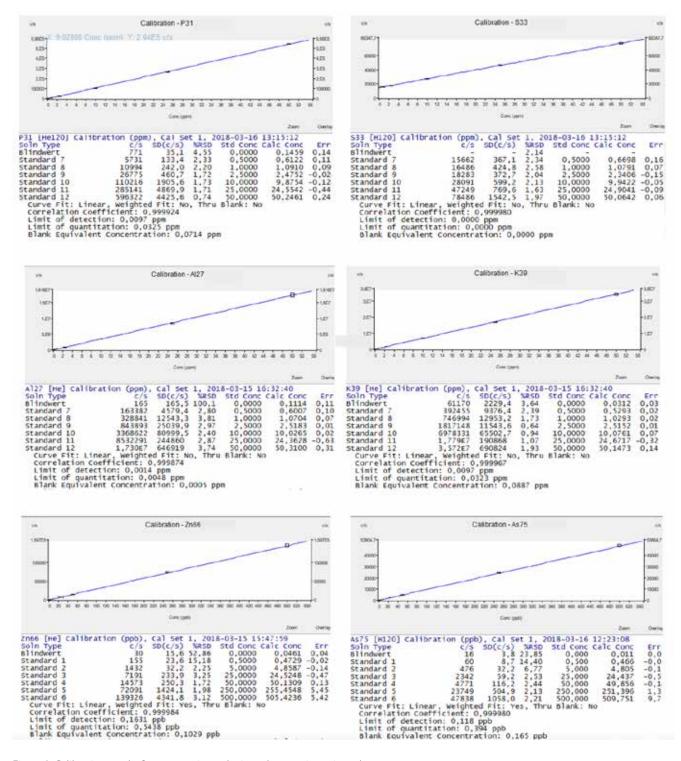


Figure 1: Calibration graphs for some major and minor elements investigated

Result and discussion

Tables 4, 5 and 6 present results achieved in BRC-144R (sewage sludge), CRM055 (sewage sludge 4) and PACS-2 (marine sediment) respectively. Mean values of the different dilution performed, standard deviation (%RSD), recoveries rates (%REC) and Z-score are listed.

Table 4: Results of BCR-144R, sewage sludge

lsotope	Certified value [mg/kg]	Uncertainty [mg/kg]	Mean value [mg/kg]	stdev [mg/kg]	RSD [%]	Recovery [%]	Z-score
⁵² Cr	104	3	98.7	0.7	0.7	95	-1.8
⁵⁵Mn	208	3	210	2.5	1.2	101	0.7
⁵⁹ Co	15	0.6	14.2	0.7	4.9	95	-1.3
⁶⁰ Ni	47.7	1.1	49.0	0.6	1.1	103	1.2
⁶⁵ Cu	308	7	301	7.1	2.4	98	-1.0
⁶⁶ Zn	932	23	912	23	2.5	98	-0.9
¹¹⁴ Cd	1.82	0.10	1.83	0.12	6.6	100	0.0
²⁰⁶⁺²⁰⁷⁺²⁰⁸ Pb	106	1.6	103	4.4	4.3	97	-1.9

Table 5: Results of CRM055, sewage sludge 4

lsotope	Certified value [mg/kg]	Uncertainty [mg/kg]	Mean value [mg/kg]	stdev [mg/kg]	RSD [%]	Recovery [%]	Z-score
²³ Na	774	198	954	25.5	2.7	123	0.9
³¹ P	22000	6370	21175	1255	5.9	96	-0.1
³³ S	10900	4030	14785	49.5	0.3	136	1.0
²⁴ Mg	9180	2640	11221	165	1.5	122	0.8
²⁷ Al	15300	3390	17825	213	1.2	117	0.7
³⁹ K	2460	410	2866	31.2	1.1	117	1.0
⁴⁴ Ca	47400	13000	52957	930	1.8	112	0.4
⁵² Cr	288	36.7	336	4.1	1.2	117	1.3
⁵⁴ Fe	19000	9930	24416	163	0.7	129	0.5
⁵⁵Mn	667	121	685	14.5	2.1	103	0.2
⁵⁹ Co	95.5	7.88	112	3.3	2.9	118	0.8
⁶⁰ Ni	163	16.3	177	4.5	2.5	109	0.9
⁶⁵ Cu	482	59.6	487	16.8	3.4	101	0.1
⁶⁶ Zn	1250	253	1294	36.7	2.8	104	0.2
⁷⁵ As	236	28.1	257	8.5	3.3	109	0.7
⁹⁸ Mo	131	34.9	147	3.6	2.5	113	0.5
¹¹⁴ Cd	60.6	4.13	60.0	1.1	1.8	99	-0.1
²⁰⁶⁺²⁰⁷⁺²⁰⁸ Pb	154	14.2	161	2.3	1.4	104	0.5

lsotope	Certified value [mg/kg]	Uncertainty [mg/kg]	Mean value [mg/kg]	stdev [mg/kg]	RSD [%]	Recovery [%]	Z-score
⁷ Li	32.2	2.0	30.1	2.2	7.3	93	-1.1
9Be	1.0	0.2	0.90	0.1	5.6	90	-0.5
⁵¹ V	133	5	130	3.5	2.7	98	-0.5
⁵² Cr	90.7	4.6	84.0	1.0	1.2	93	-1.5
⁵⁵ Mn	440	19	421	2.4	0.6	96	-1.0
⁵⁹ Co	11.5	0.3	11.2	0.2	1.8	97	-1.1
⁶⁰ Ni	39.5	2.3	40.2	0.6	1.6	102	0.3
⁶⁵ Cu	310	12	313	0.9	0.3	101	0.2
⁶⁶ Zn	364	23	347	20	5.7	95	-0.7
⁷⁵ As	26.2	1.5	25.5	1.3	5.1	97	-0.5
⁷⁸ Se	0.92	0.22	0.94	0.09	9.3	102	0.1
⁸⁶ Sr	276	30	265	1.5	0.6	96	-0.4
¹⁰⁷ Ag	1.22	0.14	1.27	0.1	7.8	104	0.4
¹¹⁴ Cd	2.11	0.15	2.06	0.12	5.8	97	-0.4
²⁰⁵ TI	0.6	-	0.58	0.04	6.8	97	-
²⁰⁶⁺²⁰⁷⁺²⁰⁸ Pb	183	8	189	1.3	0.7	103	0.7

Table 6: Results of PACS-2, marine sediment

Accuracy

Certified reference materials were measured in order to evaluate the accuracy of the method. The Z-score parameter was used to evaluate accuracy besides spike recovery efficiency. All certified elements were within the certified control ranges (-2.0 < Z-score < 2.0) (Figure 2). It should be mentioned that such accuracy can only be achieved with sensitive and precise measurement.

Due to the outstanding sensitivity and robustness the PlasmaQuant MS was able to detect trace and major concentrations in a single method run and is a highly suitable instrument for the determination of trace and major elements in all types of samples.

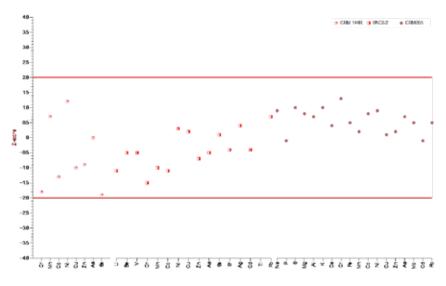


Figure 2: Z-score distribution of all elements measured in three CRMs

Precision

The relative standard deviation (RSD) was used as a parameter to assess the precision of the measurements. On average RSDs of 2.8% were achieved. Precision and accuracy (recoveries rates) of the three CRMs are shown in Figure 3. It can be seen that all recovery rates are within 80-120%, except for Na, S, Mg and Fe in CRM055 due to higher uncertainty of the reference value (Z-score for those elements where <1.0) while the RSDs are < 5%. Except for some elements such as Li, Se and Ag in PACS-2 which are within 8-9%.

All results within the range of ppb to % showed great precision and accuracy with the methodology applied during all the measurements.

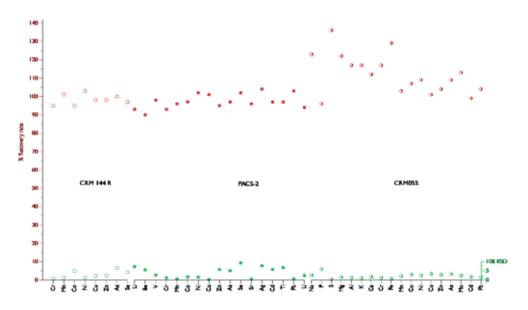


Figure 3: Recovery rate and precision of three CRMs. All measurements are within the range specified.

Conclusion

The PlasmaQuant MS offers a simple, fast, precise, accurate, and cost-efficient method for the analysis of soils and sewage sludge. The instrument behaves as a robust instrument able to run different matrices in the same sequence using the same calibration curve without the need of preparing different methods for different matrices.

In summary, the PlasmaQuant MS is a highly suitable instrument for the determination of trace and major elements in complex environmental sample types such as soil, sediment ad sewage sludge.

The PlasmaQuant MS includes several innovative technologies (Eco Plasma, ReflexION ion mirror, iCRC, pre-quadrupole, alldigital detector) that provide the following advantages:

- Excellent sensitivity on the whole mass range for the lowest limits of detection.
- Excellent plasma robustness for all matrices with the new RF generator using only half the Ar consumption (<11 L/min).
- The iCRC (integrated Collision Reaction Cell) combines collision and reaction modes to correct efficiently for the spectral interferences.
- Ease of use of the instrument with simplified maintenance operations and the userfriendly software Aspect MS.

This document is true and correct at the time of publication; the information within is subject to change. Other documents may supersede this document, including technical modifications and corrections.

Headquarters

Analytik Jena AG Konrad-Zuse-Strasse 1 07745 Jena · Germany Phone +49 3641 77 70 Fax +49 3641 77 9279 info@analytik-jena.com www.analytik-jena.com en · 04/2020 © Analytik Jena AG | Pictures ©: Istock/ Razvan Chisu Printout and further use permitted with reference to the source